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Abstract— In the present paper, we propose a fuzzy vector quantization algorithm based on the the well
known LBG algorithm [8], which has been successfully applied in areas such as speech and image processing.
The principal goal of our algorithm is to derive a fuzzy partition as described in [7].

In order to achieve this, we define membership functions derived from probabilistic principles and de-
pending on unknowna priori probabilities. The maximum entropy principle is used to determine thesea
priori probabilities. Examples for cases which result in the choice of uniform and Gaussian densities are
presented.

Vector Quantization
Vector quantization (VQ) [1] is a technique that has been successfully applied in some problems

of data compression and pattern recognition. It is based on the well known result of Shannon’s
rate-distortion theory which states that the performance of a data compression system is improved
by coding blocks of data; with larger blocks giving better performance. There is a limit for this
improvement however, which is related to the entropy of the source and the distortion that one is
allowed to have.

For instance in the case of a continuous Gaussian source, it is not difficult to see that regardless of
the length of the block, we will never obtain a perfect representation. This is because a real number
needs an infinite number of bits for representation. Thus for such a source we will never be able to
obtain zero distortion. On the other hand, if some average distortiond0 is permitted, it is possible to
approximate the source arbitrarily close tod0.

With this principle in mind, several algorithms have been proposed for vector quantization. In
general, their goal is to obtain a set of points (“codes”) that for a given distortion measure minimizes
the total error in the representation of the source.

Two questions immediately arise: What distortion measure should be used? And, how many
points are necessary to achieve this goal? To answer the first question, it is necessary to look at the
particular problem at hand. For instance in the area of speech processing, one distortion measure
that has been used is the Itakura-Saito measure [2].

The answer to the second question depends on the amount of total distortion that we are allowed
to have. In some cases it is known that for some algorithms, initial conditions will affect the number
of points.

Over the years, fuzzy set theoretic concepts, first developed by Zadeh [3], have found applica-
tions in the area of pattern recognition [4]. Recently, a classified fuzzy vector quantization technique
has been proposed and applied to the problem of image compression [5]. In this paper we propose
another algorithm for fuzzy vector quantization, and consider its application to a clustering problem.

To motivate the discussion of our proposed algorithm, we present a brief overview of three other
widely used vector quantization algorithms.
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This is one of the more widely used of the VQ algorithms [6]:
Given a training sequence formed by a large collection of points - which we assume represents

the source - and an initial set ofN points,C0
i , i = 1; :::;N, that we call centroids,

i) Find the regions that theseN centroids define.
ii) Find the new centroids of these regions,C1

i , i = 1; :::;N.
iii) Calculate the total distortion,dT .
iv) CalculateεT , the difference betweenC0

i andC1
i .

v) Stop if εT or dT is below a predetermined threshold.
Otherwise setC0

i = C1
i , i = 1; :::;N, and go to i.

Fuzzy c-means algorithm

This algorithm [7] constructs fuzzy partitions of data space, and assignsN membership functions
to theN partitions.

Given a training sequence formed by a large collection of points, which accurately represent the
space

i) Initialize the partition matrixU (0).
ii) Calculate the fuzzy cluster centersfvig.

iii) Update the partition matrix,U (1).
iv) CalculateεT , the difference betweenU (0) andU (1).
v) Stop if εT is below a predetermined threshold.

Otherwise setU (0) =U (1) and go to ii.

LBG Algorithm

One very important variation of thek-meansalgorithm and one that we will use for our study is
the LBG algorithm [8], which we reproduce here:

Given a training sequence formed by a large collection of points, which we assume represents
the source:

i) Find the general centroid,C1
i , K = 1, i = K

ii) Split everyC1
i , i = 1; ::;K, in two new centroids,

C0
i , i = 1; :::;2K; setK = 2K

iii) Find theK regions that these centroids define.
iv) Find the total distortiondT .
v) Find the centroids of these new regions,C1

i , i = 1; :::;K.
vi) Find εT , the difference betweenC0

i andC1
i ,

vii) If dT or εT is not below a predetermined threshold,
setC0

i = C1
i , i = 1; :::;N. Then go to iii.

viii) If K = N, end, otherwise go to ii.
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of i = 1;2;4; :::;N, i.e. it give us the 1;2;4; :::;N, centroids that are at least locally optimum.

Fuzzy LBG algorithm
Using the idea of the LBG algorithm, we propose the following scheme to obtain a fuzzy parti-

tion,

i) Find the general centroid,K = 1,C1
i , i = K. Find the membership function values.

ii) Split everyC1
i , i = 1; ::;K, into two new centroids,C0

i , i = 1; :::;2K; setK = 2K
iii) Find the K regions that these centroids define. Calculate the membership function for each

region.
iv) Find the total distortiondT .
v) Find the centroids of these new regions,C1

i , i = 1; :::;K.
vi) Find εT , the difference betweenC0

i andC1
i .

vii) If dT or εT is not below a predetermined threshold, setC0
i = C1

i . Then go to iii.
viii) If K = N, End. Otherwise go to ii.

The most important issue in this algorithm is how to define the membership function for each
region. One idea that comes very naturally is using the probability that given a pointxj it belongs to
the partitionAi , i.e. p(Ai jxj). Using Bayes formula we have:

p(Aijxj) =
p(xj jAi)p(Ai)

∑k p(xj jAk)p(Ak)

or, in the continuous case [9]

p(Aijx) =
f (xjAi)p(Ai)

∑k f (xjAk)p(Ak)
:

In order to determine the values ofp(Ai) we use the simplest possible estimator, i.e.p(Ai) = number
of points in regionAi / total number of points.

To estimate the values ofp(xj jAi), or the densitiesf (xjAi) for the continuous case, a different
approach has to be taken. In this paper, we use the maximum entropy approach [9], for estimation
of the density functionsf (xjAi). In one case, we assume that only the region of support in which the
vectorx can occur is known and that this region is finite. This results in a uniform density function.
The second example corresponds to the case of known variance, resulting in a Gaussian density
function.

Results
In order to test the algorithm, we applied it to the example presented in [10] and analyzed in [7].

The data set consists of 15 points inR2, as shown in Fig. 1. Data points (2,2), (3,2), and (4,2) form
a bridge or neck between the wings of the butterfly. A possible interpretation of this pattern is that
the points in the wings are from two distinct classes and that the points in the bridge are noise.

The objective is to find a fuzzy partition of this space and gain some insights into the selection
of thea priori f (xjAi) densities.

As it can be seen from Fig. 1, the data space can be intuitively separated into two regions: All
the points to the left of the point (3,2) belong to regionA1; while all the points to its right belong to
regionA2. The point (3,2) itself is difficult to assign, due to the symmetry of the data. We expect
that any algorithm that partitions the space will give a result similar to that obtained by intuition.
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Eucledian distance measure. As expected the point (3,2) is assigned as the general centroid. Figure
3 shows the two centroids when the space is divided into two regions. It can be observed that
because of the characteristics of the algorithm, point (3,2) is assigned to regionA1. As expected the
algorithm has separated the space into two regions that are very similar to those that we expected.

Figure 4 and Table 1 present the results when the fuzzy vector quantizer is applied to the data.
An assumption is made that we only know the finite region of support in which the noise occurs.
The maximum entropy principle together with the previous assumption results in the choice of the
uniform density forf (xjAi). Table 1 shows the resulting fuzzy partition. Note the similarity to crisp
(non-fuzzy) partitioning.

Finally, Figure 4 and Table 2 present the results when the variance of the noise is assumed
known; in this case the resultingf (xjAi) is Gaussian. From Table 2 we can observe that points that
are close to the border of the regions, are assigned values close to 0.5, thus reflecting the ambiguity
in assigning such points to one or the other region.
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Figure 1: Data used in the examples, (from [10]).
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Figure 2: First step of the LBG algorithm; the point� represents the general centroid.
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Figure 3: Final result of the LBG algorithm when the space is divided into two regions: The2

points belong to regionA1, and the4 points belong to regionA2. The centroids of each region are
represented by�.

x µx(A1) µx(A2)

(0,0) 1 0
(0,2) 1 0
(0,4) 1 0
(1,1) 1 0
(1,2) 1 0
(1,3) 1 0
(2,2) 1 0
(3,2) 8/15 7/15
(4,2) 8/15 7/15
(5,1) 0 1
(5,2) 0 1
(5,3) 0 1
(6,0) 0 1
(6,2) 0 1
(6,4) 0 1

Table 1: Membership function values when the resulting pdff (xjAi) is uniform.
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Figure 4: Fuzzy partition when the resultingf (xjAi) is uniform. The numbers inside the parenthesis
represent the values of the membership functions, i.e.(µx(A1);µx(A2)). Note the similarity with
crisp partitioning.

x µx(A1) µx(A2)

(0,0) 0.97071 2.9287E-02
(0,2) 0.97071 2.9287E-02
(0,4) 0.97071 2.9287E-02
(1,1) 0.91904 8.0954E-02
(1,2) 0.91904 8.0954E-02
(1,3) 0.91904 8.0954E-02
(2,2) 0.79543 0.20456
(3,2) 0.57116 0.42883
(4,2) 0.31327 0.68672
(5,1) 0.13513 0.86486
(5,2) 0.13513 0.86486
(5,3) 0.13513 0.86486
(6,0) 5.0801E-02 0.94919
(6,2) 5.0801E-02 0.94919
(6,4) 5.0801E-02 0.94919

Table 2: Membership function values when the resulting pdff (xjAi) is Gaussian. In this case the
membership value of the points which are close to the border between regions reflect the ambiguity
in assignment.
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Figure 5: Fuzzy partition when the resultingf (xjAi) is Gaussian. The numbers inside the parenthesis
represent the values of the membership functions, i.e.(µx(A1);µx(A2)).


